Is SkyNet Nearly Here? Explaining Google’s Neural Network

Machines learning things aren’t a new thing at all. Type some instructions into a batch file, and you can instruct your computer to do just about anything with the programs you run. Get a webcam and facial recognition software and you can clearly see that your computer is capable of recognizing your face. However, all of the things described here are not results of the computer’s “thoughts.” At best, today’s average home computer can emulate thinking. But there are people out there in teams around the world developing ways to reproduce human thinking in machines, even combining the best of both worlds, to create a new form of learning that mimicks the intuitive way in which we capture the world around us.

Although many of us are afraid of the implications of artificial intelligence, there’s no doubt that everyone holds it in reverence as the pinnacle of the evolution of the machine. How far have we come in our pursuit to create machines that can come close to human intuition and abstract thought? We’re going to have a look at what the Google Brain team is doing and how artificial neural networks could influence the way that technology interacts with us on a daily basis in the near future.

What Is An Artificial Neural Network?


An artificial neural network, put simply, is a system that uses an algorithm which is inspired by the way humans learn things. At present, personal computers are machines of habit. They will rigorously follow one single line until they reach the end of it regardless of whether the results make sense. For example, a computer system that analyzes consumer behavior on a website could show that a large number of visitors click on a link at the top right corner of every page, but it cannot explain why it happens. It cannot adapt its methods to dig deeper and extrapolate meaning from the raw data it’s churning through.

A “perfect” artificial neural network will be able to adapt the way it processes information to fit the data it’s confronted with. This is especially useful with audiovisual processing where rule-based programming is very inefficient. While an American will have little trouble understanding an Australian accent in very little time, computers may have much more trouble doing the same task. Artificial neural networks are designed in such a way that a computer may be able to interpret differences in how Australians speak in the same way we do – by picking up the fluctuations in tone and pronunciation, building a context, and filling in any gaps with other information conveyed in the sentence. Doing this with simple programming is much harder than it seems.

What’s Google Brain?


Google Brain is a project that focuses on large-scale deep learning. The project involves a colossal amount of machinery, with 16,000 of the CPU cores in their data centers all working in unison to create a machine that can effectively “learn” and “understand” things. The above image is actually a “drawing” that the network made. It didn’t “copy” the design from anywhere; it simply constructed it abstractly like any painter would.

One of the most notable accomplishments in this project is the network’s ability to detect cats. Modern-day computers can easily display a video with a cat for your entertainment, but they can’t understand what they are showing you. No one expects their computers to know what a cat is. Yet they show videos of these fuzzy little creatures millions of times per day around the world, completely ignorant of their existence. The computer you’re reading this from is probably no more than a glorified interactive television. Google managed to create a system that could point out the cat in a still image (with no previous instruction as to what a cat is). This is an unparalleled accomplishment that could take us all a step further in the information age.

Applications for Neural Networks

Imagine having a robot with you that can not only drive you to work but can also serve as a medic when you’re injured. Just the simple fact that a computer can distinguish what a cat is when it is surrounded by other objects has major implications. You may have to wait a while (16,000 CPU cores is very difficult at this moment to fit in a small space), but distinguishing a wound from the skin surrounding it (and identifying the type of wound) means that a “medical module” on a robot could help it make sutures on your body. Once you take a bit of time to think about it, artificial neural networks could lead to feats of technology the likes of which we haven’t thought we’d see in our lifetimes. Perhaps one day not too far from now we’ll be taking robots along as biking buddies and playing football with them, all thanks to the way in which they can adapt and learn just like us.

What do you think? Is it overly optimistic to think that we can go from “cat detector” to “robot doctor” at some point in our lives? Tell us below in a comment!

Miguel Leiva-Gomez Miguel Leiva-Gomez

Miguel has been a business growth and technology expert for more than a decade and has written software for even longer. From his little castle in Romania, he presents cold and analytical perspectives to things that affect the tech world.


  1. I think we are still along way from having a skynet if it is even possible. It is when this becomes self aware that we all need to run and hide. Computers are still fundamentally based on programs and if and when the day comes that they can become self aware, that is the day we need to be scared and very careful about how we proceed.

  2. Look at how computers have changed in the last 60 years. Something that took up a whole room in the 80’s, now fits in my top pocket. It can take photographs, connect to the internet via “wireless” and has lots more storage than the mainframes of the 80’s. 16000 CPU’s on a single is not that far away. To quote the early 80’s, ,”who would ever need more that 640K”. My watch now has more storage that that.
    Self aware is a different issue. Emulating it in the next few years should not be that much of a problem. Actually doing it, I do not know.
    Like all other technology, we need to be mindful of how we use it. Splitting the atom had the potential to supply unlimited power, or develop atomic bombs. AI could be just as beneficial, or, possibly, just as destructive.
    We are going to proceed, we need to make sure we do so with care.

  3. 16000 cpu’s , the important is to know how the Cou’s will be connected, FDDI ?, Network ??, CryLink from (Sgi/Tera)??, or InHome Dev ?? , thats the first idea to make it work, if that it is really completed, which is the speed between all the parallel or cubic or wahtever google designs to connect, why do people likes to imagine that SkyNet exists, like Umbrella !!! c’mon..
    i just remember in 1996 when i have connected 64 procesors with micro vax /DEC systems , if you know, the history was so different and difficult to think about to connect 64 when the usual was Serial/modem …

    windows server 3.11 that days was to difficult to stablish a cluster in HA ..
    today , windows is not the most recommendable for clusters , Solaris, Irix, Dec, there was already using that days ha.cluster programs , for email, web, firewalls like Gauntlet…
    why i mention this ??, i can´t see nothing that works better , or just we have more security versions patches or release, but nothing better from that days until now, i don’t like to sale the idea about the progress of something that realy looks like the same day when starts …

    maybe there are more new technologies but nothing better for security or HA.clusters, or toimagine a 16000 Cpu´s ***
    and now add the econimical problem on all the world , …..

    i dont belive , thing for the next 25 years.
    i belive that Google can create something like that but by now is too far for a while , maybe in 25 years or more….
    really i can’t see that for less than 25 yrs, and i hope to stay to see that, and may be from that days will begin the real new age for Robots w/IA…

  4. 16000 процесора, важливо знати, як буде підключений процесора, FDDI ?, Мережа ??, CryLink з (SGI / Tera) ?? або InHome Dev ?? , То буде перша вистава, щоб зробити його роботу, якщо це дійсно завершена, що швидкість між усіма паралельними або кубічних або що Google конструкцій для підключення, чому люди люблять думати, що існує SkyNet, як парасолька !!! давай ..
    я просто пам’ятаю, в 1996 році, коли я підключений 64 процесорів з мікро VAX / DEC систем, якщо ви знаєте, історія була настільки різні і важко думати про для підключення 64, коли зазвичай був Серійний / модем …
    Windows Server 3.11, що дні було важко затвердити кластер в ГК ..
    сьогодні, вікна не рекомендується найбільш кластерів, Solaris, IRIX, грудень, там вже за допомогою цього дня ha.cluster програми, для електронної пошти, Інтернет, брандмауери, як Gauntlet …
    чому я говорю про це ??, я не можу не бачити нічого, що працює краще, або просто у нас більше безпеки версій патчів або звільнити, але нічого кращого від днів досі, я не люблю продажу ідею про прогрес те, що дійсно виглядає як в той же день, коли починається …
    може бути, є більш нові технології, але нічого кращого для безпеки або HA.clusters або toimagine 16000 Cpu’s ***
    і тепер додати econimical проблему на весь світ, …..
    я не вірю, саме протягом наступних 25 років.
    я вірю, що Google може створити щось подібне, але зараз це занадто далеко на деякий час, може бути, в 25 років або більше ….
    дійсно я не можу бачити, що менш ніж за 25 Роки, і я сподіваюся залишитися, щоб побачити, що і може бути від цього дня почнеться реальне нову еру для роботів ж / IA …

Comments are closed.